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Fig. 1—(a) E field perpendicular to column. (b) E field parallel to column.
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Fig. 2—(a) Plasma tube across transmission line, (b) Plasma tube along transmission line.

If now the plasma tube is placed at the
center of the transmission line with its axis
parallel to the axis of the line as shown in
Fig. 2(b) the resulting output from the line
again exhibits the Tonks-Dattner reso-
nances. The tube in this case was approxi-
mately 1.2 wavelengths long.

The above experiments show that reso-
nances can be excited when the electric
vector of the incident EM wave is parallel
to the axis of the plasma column and also
when the plasma column is placed so that it
may not be considered as a localized dis-

continuity. Since these resonances are not

predicted by any theory so far put forward

we feel there is a need for variation of the

Dattner type experiment and for the per-

formance of new and different experiments

so that the conditions under which these

oscillations are excited can be more com-
pletely determined.

J. WiLLis

I. PETROFF

College of Engineering

University of California

Los Angeles, Calif.
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Proposed Experiment for Eliciting
Multiple Resonances from the
Ionosphere*

In the theory of Herlofson! only one res-
onance is predicted for a cylindrical plasma
column irradiated by an electromagnetic
wave having both its direction of propaga-
tion and electric field E perpendicular to the
axis of the column, a mode which he desig-
nates as sagittal. Herlofson treats the prob-
lem by solving the wave equation in cylin-
drical coordinates and then imposing bound-
ary conditions to find the frequency or fre-
quencies for maximum scattering from the
column. In his treatment, the modes which
involve Bessel functions of order higher than
unity have the same resonant frequency as
that for the dipolar mode for which the order
of the Bessel function is unity. No reso-
nances at all are predicted for the parallel
mode of excitation in which E is parallel to
the axis of the column. These predictions are
contrary to the experimental observations
of Dattner? and others? for the saggital mode
and also contrary to the observations re-
ported by Willis and Petroff* in which a
spectrum of resonances is found for the
parallel mode. Experiments by Boley’ have
shown that the sagittal scattering for the
higher order resonances is that appropriate
for a dipole, that is, his experiments show
that the field about the column for the
higher-order modes is not quadrupolar or
sextupolar,

These multiple resonance experiments
under a variety of experimental arrange-
ments suggest that the mode spectrum may
be an intrinsic property of a plasma, per-
haps of an extended plasma such as the
ionosphere. The higher-order resonances
occur when the electron density is lower
than that required for the principal reso-
nance. The frequencies for the various reso-
nances, f, (they may also be expressed in
terms of electron densities), are given rea-
sonably well by the expression

2

(2n)/(2n+1)=[1— ;_:>2:|1 (1)

where # =0 for the principal resonance and
n=0,1,2, 3, ..., #nfor the series. f, may
be expressed in terms of f5 and, for the vari-
ous values of # we have

Fulfo = 1.0, 1.34, 1.67, etc. @

An experimental test of this hypothesis
would be afforded by taking ionospheric
soundings employing a set of discrete fre-
quencies and noting whether reflections
from the ionosphere are obtained, at a
fixed height, not at one frequency only, but

* Received May 4, 1962.
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at a set of related frequencies whose rau.
are specified in (2). Data of the sort desired
may already be available from some labora-
tory engaged in ionospheric soundings. If
not, it is suggested that simultaneous sound-
ings at several frequencies be taken and the
results reported. If the experiments gave a
positive result, changes obviously would be
necessitated in some of our accepted views

as to the structure of the jonosphere.

W. D. HERSHBERGER

College of Engrg.
University of California

Los Angeles, Calif.

Stability Criteria for Tunnel-
Diode Amplifiers*

A tunnel-diode amplifier is stable when
the amplifier network is reduced to an ar-
bitrary single loop and the equation given
by the sum of the impedances around this
loop equal to zero [2Z(P)=0 where p=~
+jw] has no solution in the right-half plane
{y>0). This is equivalent to the require-
nient that the system determinant shall have
no zeros in the right-half plane. Several
authors have used this criterion.*? To de-
termine analytically whether 2Z(p) has any
positive zeros is very laborious if at all
possible for many practical amplifier con-
figurations.

A possible approach is to use a contour
theorem from the theory of complex func-
tions as formulated by Goldman.?® “If a
function Z(p) is analytic, except for possible
poles within a given contour taken in the
clockwise direction in the p-plane, then the
number of times that this contour into the
Z-plane encircles the origin in the Z-plane
in a clockwise direction is equal to the num-
ber of zeros minus the number of poles of
Z(p) inside the contour in the p-plane, each
pole and zero being counted in accordance
with its multiplicity.”

When applying this contour theorem to
SZ(p) for an arbitrary loop in the tunnel
diode circuitry, we must have a complete
knowledge of the poles of =Z(p) in the right-
half plane and at infinity. Hughes?* discusses
these difficulties and obtains a plot easy to
interpret by dividing the original function
Z(p) with a new function Zs(p) with no
zeros in the right-half p-plane, the same
number of poles as Z(p) in the right-half p-
plane and with the same limit at infinity as
Z(p) This method is applicable to tunnel-
diode amplifiers, but a complete knowledge
of the poles in the right-half p-plane is suffi-

= Recetved March 26, 1962; revised manuscript
received, May 4, 1962.

1 H. Boyet, D. Fler: and C. A. Renson, “Stability
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clent to interpret the complex plot of =Z(p)
along a chosen contour. Generally we can
say that the closer to the negative resistance
we choose the loop representing the tunnel
diode and amplifier network, the fewer the
poles in the right-half p-plane. It is conven-
ient to choose the representation given in
Fig. 1 for then the diode is separated from
the rest of the network.

Z'(p) includes the cartridge capacitance,
bias circuit, matching network, load, etc..
and is a passive impedance. The impedance
around this loop is given by

1

c
22(p) = =t Rt L+ Z(p).

? RC
This function has one pole in the right-half
planeat p=1v,=1/RCandapoleat p= + .

With a contour in the p-plane chosen as
the jw-axis and a semicircle enclosing all
poles and zeros in the right-half plane, the
sZ-plot of a stable amplifier encircles the
origin once in a counterclockwise direction as
determined by the pole p=1/RC. From
symmetry it is sufficient to plot 2Z(jw) for
positive frequencies and only up to the
diode cutoff frequency w, as the circuit is
passive above w.. Davidsohn, Hwang and
Ober’ have considered stability criteria from
a similar point of view.

Summing up we have the following sta-
bility criterion: “A tunnel-diode amplifier
15 stable 1f and only if the sum of the diode
impedance and the connected network im-
pedance plotted as o function of frequency
encircles the origin once in a counterclockwise
direction when the plot 1is closed with an arbi-
trary line in the right-half Z-plane between
the positive and mnegative diode cutoff fre-
quency. The diode cartridge capacitance is
considered to belong to the network connected to
the diode.”

Fig. 2 shows the application of this cri-
terion. This circuit is one of the simplest
possible amplifier circuits and vet it is labor-
ious 1o investigate the stability analytically.

The graphical display gives a good feel-
ing of how the amplifier stability is influ-
enced by change in diode parameters. This
is especially true when the amplilier circuit
is more complex than given in the example
so that the minimum distance between the
origin and the plotted function occurs for
frequencies different from the amplifier
center frequency.

When an amplifier configuration con-
nected to an ideal transmission line or a
load resistance Ry is determined to be
stable, it is of intercst to determine which
mismatch is permissible at the input with-
out upsetting the stability. To do this we
reduce the amplifier network to the loop
nearest to the transmission line connection
(Fig. 3). Zsmp1 includes the tunnel diode and
matching network Zisa is the transmission
line impedance with mismatches from circu-
lators, stabilizing networks, etc. A condition
for stability is that Zunpi(p)+Ziewa(p)=0

5 U. S. Davidsohn, V. C. Hwang and G. B. Ober,
“Designing with tunnel diodes, part 1,” Elec. Design,
vol. 8, pp. 50-55; February, 3, 1960.
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Fig. 1— Equivalent tunnel-diode amplifier representa-
tion showing loop chosen for stability criteria.
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Fig, 2—FExample of diode and connected network
representating a stable amplifier,

qupl Zioad
Fig. 3-—Loop for determining permissible mismatch.

has no solutions in the right-half plane. If
we define

. . Zampl — Ro
G = (ideal voltage gain) = Zm—pl—_:R—o
p = (nonideal load reflection coeflicient)
_ Lo — R
" Ziw + Ry
then Zumpi+Z1na=0 can be rewritten as
G-p—1=0.

As G-p has no poles in the right-half
plane (G is stable and Zisa is a passive im-
pedance), a necessary and sufficient stabil-
ity criterion is that the complex plot of
G-p when w goes from — = to + = does not
encircle the point +-1. (Compare with the
Nyquist criterion for feedback-amplifiers.)

If the phase of the input reflection coef-
ficient is not known or not controlled, a suf-
ficient criterion for stability is

[Gl-[el <1



